SOME SELF-SIMILAR PROBLEMS OF STAR CRACK
DEVELOPMENT UNDER ANTIPLANE DEFORMATION
CONDITIONS
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INTRODUCTION

A self-similar plane problem of the theory of elasticity about a system of radial cracks, distributed
uniformly in angle, being developed from a point at a constant velocity under antiplane deformation conditions
is solved by the Smirnov—Sobolev method of functionally invariant solutions [1-41.

The formulation under investigation can be considered as a model for the mathematically more complex
problem of plane deformation.

In an unloaded x, y plane let a system of 2n radial slits start to be developed from the origin at a con-
stant speed at the initial instant, The slit edges are loaded in such a way that the whole elastic space is sub-
jected to antiplane deformation along the z axis. Hence, only w=w(x, y, t) — the z axis component of the dis-
placement vector — is not zero. In this case the nonzero components of the stress tensor have the following
form:

Ty, = POW/OY; T = pow/ozx.
The function w satisfies the wave equation
*w/dx? + Pw/oy? = b—20%w!0t. 0,1)

Let us examine a region of the x, y plane bounded by rays passing through adjacent slits and the arc of
a shear wave (Fig. 1). The solution of (0.1) which will satisfy certain boundary conditions is sought in this
domain, On the edges of the slits p=vx?+y? <vt; p=arctan (y/x)=0; 7/n stresses are given, while compliance
with the condition w=0 is required on the sections vt <p <bt; ¢=0, The latter results in some symmetry con-
ditions for the effective loads depending on the evenness or oddness of w relative to the angle bisector. The
boundary conditions on the wave depend on the kind of load and will henceforth be mentioned separately in
each problem,

§1. Let us examine the case when the load on the slit edges is given in the form p=p ,f(p/bt) -k (k is
the unit vector of the z axis). This kind of loading corresponds to the Broberg problem [5]. As is known [2],
the stress-tensor components Txys Tyz and the rate of displacement W are hence homogeneous functions of
the coordinates and time of zero degree, Using the method of functionally invariant solutions of the wave equa-
tion, we find W in the form

w = Rel(z,), 2, = leh(n(B — ig))I-%; ch p = b/p,
where U(z,) is some analytic function,
The domain shown in Fig. 1 goes over into the upper half-plane y, =0 in the z,=x,+1iy, plane. The edges
of the slits along the rays go over into segments (0, x5) and (—x,y, 0) of the x, axis, respectively, for ¢ =0
and ¢ =7/n, where xy = [cosh(narccosh(/v))I-l. Theare of the wave p=bt, 0 =@ =< 7/n goes over into the rays

1, +=), (—=, —1), At infinity of the z, plane is the point of intersection between the bisector of the angle r/n
and the arc of the wave,
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Let us find the boundary conditions which the function U(z,) satisfies at y,=0. Since the body-is assumed
to be in the rest state ahead of the wave, W =0 on the wave [1] or w=Re U(z,) =0 at y,=0, =< x,<-1, +1<
Xy <+, The stresses ¢ =0 and ¢ =7/n,w=0atw=Re U(z,)=0 at y, =0, x5 < sz [<1, act at the edges of the slits,
from which

Im U'(z,) = (4po/n)or(1 + r3)2f(E)lday/dzy| for” gy, = 0, 0<< [2] < Zgy;
here
=281+ ) =re r =t [1 — VT —E; E=psbi.

Therefore, we obtain a mixed boundary-value problem for the function U'(z,). Here Im U'(z,) is given in
the interval (~x,,+x5,) and Re U'(z,) =0 outside. The general solution of this problem can be written down by
using the Keldysh—Sedov formula {6]. Let us examine in detail a particular form of the loading f({) =const.
Here, as in the general case, two versions are possible, namely: W is anevenfunction of Xy, Which corresponds
to"folding of the angle," or W is an odd function of x,, which corresponds to ™orsion of the angle." Let us re-
quire W to be bounded at the vertex of the angle and at the intersection between the bisector of the angle 7/n
and the arc of the wave.

In the first case, we find analogously to {2] that the function
U’ (z,) = Aiz, (z% —zh)

satisfies the boundary conditions, has the required order of the singularity at the noses of the slits, and has the
correct behavior at the points z,=0 and z, =%, corresponding to the vertex of the angle 0 under investigation
and the point of intersection of the bisector of the angle 7/n with the arc of the wave in the physical plane (see
Fig. 1).

The coefficient A is found from the condition that 7y, =p, on the edge of the slit 0 <x, <xy. In this prob-
lem Tyz (%, y, t), exactly as Ww(x, v, t), is a homogeneous function of zero measurement which satisfies the wave
equation, Hence, by using the method of functionally invariant solutions it can be represented as

Ty = Re 1(z,), 1.1)
where T(z,) is some analytic function,
The equality d"yz = dw/0y permits relating the functions T (z,) and U(z,):
(dT/dz,)(dz,/dz)dzldt) = W(dU/dz,)dzy/dz)dz/dy),
where z=b"! cosh(n~!arccoshz,™!). Hence, for dT/dz, we obtain
dTjdz, = — Aiz,p Vb2 — 2 - (28 — 25) %, (1.2)

where by integrating along the contour passing along the upper edge of the slit (xyy, 1) and bypassing the point
Zy =Xy around an infinitesimal semicircle, we obtain
1

Do = Apfv S 2z =AY /. (1.3)
oo 0 VE—@I6% V [ch (rarch (b2/v))] % — 22, - !

Using the equalities (1.1)-(1.3), we find that Tyz Dear the nose of the slit. ©,, ~ Ny(x — vf)~Y2 has the asymptotic
for ¢ =0, (z — vt)/(vt) < 1, where :
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1 T{/241/2n) VI=(o/bR T o1y /UL —a)
NyNy = anz I Tatim Gre® Vm" o (1.4)

a=blv-1l — V1I—(wbyl.

Hence, Nyo =PV 2n/7- T'(1 +1/20)T-1(1/ 2 + 1/2n)Vl is the value of the stress-intensity coefficient for a singu-
larity at the nose of the slit in the static problem about loading a star crack with slits of length [ =vt for an
analogous loading by the shear stress p,. The expression (1.4) is simplified substantially for n=1, which
corresponds to an isolated crack:

NiINy = E-V T = @BV 1= (0/6)% Nie= poV 112,

where E(x) is the complete elliptic integral of the second kind,

In case of loading the sides of the angle by a load of different sign, the displacement rate W is an odd
function with respect to the angle bisector or the x,=0 axis in the z, plane. Then the function dU/dz,, which
satisfies all the boundary conditions and the additional conditions at the points z,=0 and z, =<, will be

dUldz, = Ai (28 — 231) ™%, Ay = peabib (ugs) ™",
b/v

g __S zdz
2 PUNE—
¢ VE—1V 1— 2} ch*(narchz)

Here the coefficient Ay is found from the same conditions as above. For a singularity in the stress field at
the noses of the slits, the coefficient referred to the corresponding static value equals

, - r(14-1/2 —-3/2 11—
NNy =Vt AUy = ey A /1=y T, (1.5)

where

= poV I2nn)y— T(1/2 + 172n) T-Y(1 + 1/2n).

In the particular case of motion of an 1solated crack with n=1, we obtain from (1.5)
Ny/Nyy = VI —(0/b)%; Ny, =V 2lpy/n.

The dependences (1.4) and (1.5) of the stress-intensity coefficients for a singularity in the rate of growth
of the slit length are shown in Figs. 2 and 3 by curves 1-4, corresponding to the values n=1, 2, 5, 7. Super-
imposed for comparison in these same graphs by dashed curves is the dependence N/ N, =V1-v/b which holds
under antiplane deformation for a semiinfinite moving slit in the case of loading by time-independent forces
[7]. Tt is seen in Figs. 2 and 3 that the finiteness of the slits in the problem under consideration results in an
increase in the ratio Ni/ Nje (i=1, 2), where the larger the number of cracks in the system, the higher the de-
gree.

§2. A class of problems in which the displacements are homogeneous functions of the coordinates and
time was considered in [1, 4], devoted to self-similar problems of the plane theory of elasticity.

For the problem under consideration this case is realized if the loadonthe slit edges is representable
in the form p =pgty/t - flo/(bt)) - k. For the analytic function U(z,), whose real partis the displacement w(x,, y,),
we obtain the Keldysh— Sedov boundary-value problem in the z, plane:

Im U'(z) = 2pobty/p-fE)L + r?)~Ydz /dzy] for yy = 0, 0 < |zg| <oy
Re U'(z;) = 0 for ¥y, =0, |z > xy.

The solution of this problem which possesses the necessary singularity at the noses of the slits and the cor-
rect behavior at infinity can be represented as

+%x21 .
2 Dobt iy Vs 21
dUJdzy =— o= Zo 02 Y ey o P dzlldz2| ds.

27T M,

Let us examine a particular form of the load:

1’ l-tgl <xgi1

Zz,) =
f(z) {07 x21<|xz|<x21,
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where x3; =2r3(1 +18%)~1; ro=(b/vy [1=V1-(vy/b)%]; vy=v. For symmetric loading (folding of the angle), the
coefficient of the singularity in the stress field is given by the formula

B T (/2-1/20) a1z V(1 —a?) (1 — a?)
No/Nso = 2V 2/ 1,V blo - 22 o e @.1)

I _ S (A +r)ar
1 24" ¥ (143 V (a—2 —2n) (27 — ;2n)

In the case of loading, for which the displacements w(x, y, t) are uneven relative to the bisecting angle
(torsion of the angle), the coefficient of the characteristic field is given by the formula

— 91 % T —y2 D +1/2n) - (1—a?) (1 — o%")
NofNoo =2V 2w L, VbJo - na ™" bl l/ P 2.2)
I — 1—[—02"4 5. rdr
2 a® (1+r2)V(a—2n_an)(afin__TZn)

where Nj, and N, in (2.1) and (2.2) are given by (1.4) and (1.5), but itis hence necessary toreplace p, by peto/t.

Curves 1-5 in Fig. 4 show the change in the ratio Ni/Nic as a function of v/b for n=1, 2, 3, 4, 5, re-
spectively. It is assumed that the stresses act along the whole length of the cracks, i.e., vy=v. The integral
1, is computed numerically. As is seen from the curves presented, as n— =the magnitude of the ratio Ni/Nic——
1 for v/b<1.

Curves 5 and 6 in Fig. 5 show the change in the ratio N,/N,; as a function of v/b under the condition that
the stresses act on the whole length of the crack, Curve 5 corresponds to n=1 and curve 6, to n=5, The
integral I, in (2.2) is computed numerically,

It is interesting to examine the limit case obtained from (2.1) if v, is allowed to tend to zero, but hence
Pg—~  in such a way that 2pgvet,=Q =const. This case corresponds to loading by lumped forces acting at the
vertices of wedges cut by cracks. The expression

N = O/n-V ol U —@/bR T AY T — a®)/(1 + a®) (2.3)

is obtained for the stress-intensity coefficients at the vertices of the cracks, This expression is simplified
substantially in the limif case n=1 and n>1 and v/b<1:

Ny =Q/m- IV T — (/b for n = 1; 2.4)
Nip = Q/n- Vi@l T=(wlb) for n3>1.
The quantity N=Q/7 -/ @1) is the solution of the static problem of a star crack at whose vertices of the angles
the lumped forces Q act. From this and from the equalities (2,3) and (2.4) it follows that the magnitude of the
ratio Nyy/N varies between [1— (v/b)?]*/2 forn=1 and [1—(v/b)?}'/* asn— = (Fig. 5, curves 1 and 4). Curves
2 and 3 in Fig. 5 correspond to the values n=2 and 3. Computations performed by means of (2.3) showed that
even for n=4 the appropriate curve agrees with the limit [1—(v/b)2]1/ 4 for practically all values of v/b.

The exact solutions obtained permit a qualitative estimation of the influence of the loading method, the
number of cracks, and the velocity of their motion in the development of a radical system of cracks which
originates during the explosion of a high-explosive cord charge in a frangible medium.
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